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Abstract 

A scheme to estimate errors in maximum-entropy- 
method (MEM) charge-density distributions via Monte 
Carlo simulations is presented. Knowledge of the errors 
in the density allows evaluation of the reliability of fine 
features in MEM electron densities. As a test example, 
the errors in the MEM electron-density distribution of 
metallic beryllium are examined based on calculations 
using both uniform and non-uniform prior distributions. 
The study shows that the MEM introduces systematic 
bias in the density and that the bias is closely related 
to the fact that after a MEM optimization most of the 
X 2 value is carried by a few low-order reflections. An 
iterative procedure to estimate the bias is presented 
and this allows a correction of the MEM density to 
be performed. The systematic bias is in some regions 
an order of magnitude larger than the random error 
in the density. The bias-corrected MEM density has a 
more uniform residual distribution than the uncorrected 
density. The topological features of the electron-density 
distribution in metallic beryllium are discussed based on 
the bias-corrected MEM densities. 

1. Introduction 

In recent years, the maximum-entropy method (MEM) 
has been used in a number of studies of charge distribu- 
tions in crystals. When X-ray diffraction data are used, 
the MEM yields the electron-density distribution (EDD) 
without assuming any model (Collins, 1982; Sakata & 
Sato, 1990), whereas neutron diffraction data allows 
the direct-space nuclear probability density function to 
be determined (Sakata, Uno, Takata & Howard, 1993). 
From limited numbers of accurate X-ray diffraction 
data, EDD's have been determined by the MEM in a 
number of systems, such as Si, Be and YCs2 (Sakata 
& Sato, 1990; Takata, Kubota & Sakata, 1993; Takata, 
Umeda, Nishibori, Sakata, Saito, Ohno & Shinoshara, 
1995). Maps that qualitatively reveal bonding features 
have been obtained in these and many other studies. 
Although this is of interest in itself, quantification and 
detailed analysis of the derived MEM charge densities 
is highly desirable to make the method generally useful. 

t Present address: Department of Chemistry, University of California 
at Santa Barbara, Santa Barbara, CA 93106, USA. 

Quantification of MEM densities has been introduced 
for nuclear density distributions through parametrization 
and least-squares fitting of the MEM nuclear density 
to a function based on the one-particle potential model 
(Takata, Sakata, Kumasawa, Larsen & Iversen, 1994; 
Iversen, Nielsen & Larsen, 1995: Kumazawa, Takata & 
Sakata, 1995). In the case of electron densities, Iversen, 
Larsen, Souhassou & Takata (1995) have employed the 
theory of atoms in molecules (Bader, 1991) to perform 
a detailed topological analysis of the MEM density of 
metallic beryllium. In that study, it was possible to reveal 
subtle but nevertheless physically important features 
such as non-nuclear maxima and bond critical points 
in the density. However, interpretation of fine features 
in the density raises the question of the reliability of 
the MEM density. Several authors have pointed out that 
unphysical features can appear in MEM densities and, 
depending on the quality and the completeness of the 
data, fine features in the density may be artifacts of the 
density reconstruction (Jauch & Palmer, 1993; Iversen, 
Nielsen & Larsen, 1995; Papoular, Vechter & Coppens, 
1996; Takata & Sakata, 1996). It has furthermore been 
pointed out that use of an entropy term as a regularizing 
function in the reconstruction inevitably will introduce 
systematic bias into the result (Jauch, 1994; Donoho, 
Johnstone, Hoch & Stern, 1992). 

In the conventional empirical modeling methods 
widely used in accurate charge-density reconstruction 
from diffraction data (Stewart, 1976; Hirshfeld, 1977; 
Hansen & Coppens, 1978; Figgis, Reynolds & Williams, 
1980), estimates of errors in the density and in derived 
properties can be calculated within the framework of 
the least-squares method. Such estimates rely on several 
assumptions, among which are the adequacy of the 
refined model. Several studies (Figgis, Iversen, Larsen 
& Reynolds, 1993; Chandler, Figgis, Reynolds & Wolff, 
1994; Iversen, Larsen, Figgis & Reynolds, 1995) have 
shown that even the very sophisticated models currently 
used in empirical EDD modeling are inadequate to 
describe very fine density features present in the data 
and, in general, least-squares estimates of EDD's will 
therefore contain systematic bias owing to the model. 
However, the least-squares error estimates allow to some 
extent assessment of the reliabilty of conclusions drawn 
from the model densities. An error analysis has so far 
not been developed in the case of MEM charge densities. 
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It is clear that if the MEM is to become more generally 
applicable in chemistry and physics some kind of error 
assessment is necessary. This is especially imperative 
for very accurate charge-density studies. 

The present paper presents an attempt to derive es- 
timates of the error in MEM densities through Monte 
Carlo simulations. As a test case, the beryllium MEM 
density derived from the 58 structure factors measured 
by Larsen & Hansen (1984) has been investigated. 
Metallic beryllium is particularly well suited for test- 
ing MEM error estimates because it is expected that 
systematic errors in the data are few. This is due to a 
number of facts. First, beryllium has a very high Debye 
temperature (1340 K), which means that the mean-square 
amplitude of vibration is small. Thus, even at room 
temperature, beryllium scatters well to high values of 
sin 0/A. The hardness of beryllium also effectively re- 
duces contributions of thermal diffuse scattering (TDS) 
to the Bragg intensities. Furthermore, since elastic con- 
stants are known, the limited TDS effects present in the 
high-order intensities can adequately be corrected for. 
For the beryllium data set, the maximum TDS correction 
amounted to 2.6% of the intensity. The beryllium crys- 
tals have excellent diffraction properties and this allows 
use of small single crystals. The small size of the sample 
crystal ensures a good beam homogeneity of the part of 
the X-ray beam hitting the crystal. As a further benefit, 
extinction effects are minimal. Owing to the low atomic 
number of beryllium as well as the small size of the 
sample crystal, absorption effects are also effectively 
reduced. For the present data set, transmission factors 
varied between 0.990 and 0.995. Finally, beryllium has 
a very high symmetry, which means that a large number 
of equivalent reflections can be measured. This allows 
for removal of outliers and the calculation of unusually 
precise standard uncertainties on the structure factors. 
In conclusion, the beryllium data contain comparatively 
few systematic errors and provide a good case for 
calculation of errors in the MEM density. If systematic 
errors are detected in the MEM result, they are likely to 
be due to the MEM algorithm and not the data. 

2. Monte Carlo simulation 
of errors in M E M  densities 

The data that are available form a complete set of 
58 structure factors (s in0/A < 1.21 ]k - I )  with stan- 
dard uncertainties (s.u.'s) derived from the scatter of 
equivalent reflections (Larsen & Hansen, 1984). In the 
case of beryllium, the s.u.'s on the structure factors 
are typically, owing to the high symmetry of the h.c.p. 
structure, estimated from approximately 16 measure- 
ments of reflections related by symmetry. If we assume 
that systematic errors in the data are negligible and 
furthermore assume that the error distributions around 
the true structure factors are Gaussian, then the error 
distributions around the individual true structure factors 

are defined from the estimates of the standard uncertain- 
ties. From the set of observed structure factors and their 
standard uncertainties [U 'b~, o-(F'b~)], we can calculate 
a MEM electron-density distribution (EDD), p0, using 
for instance the MEED algorithm (Kumazawa, Kubota, 
Takata, Sakata & Ishibashi, 1993). For a discussion of 
the MEED algorithm and the MEM itself, readers are 
referred to the references given in the Introduction. In 
Fig. 1, the MEM density based on 58 structure factors 
is shown for the (110) plane of the beryllium hexagonal 
close-packed structure, Fig. 2. 

I1A 
Fig. I. Contour plot in the (110) plane of the MEM electron- 

density distribution of beryllium based on X-ray single-crystal 
room-temperature diffraction data. The plot is on a linear scale 
with 0.05 e ,~-3 intervals. The contour plotting was truncated at 
1.0 e A-3  to put emphasis on the lower-density regions. 
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Fig. 2. The hexagonal-close-packed beryllium structure. The space 
group is P63/mmc (no. 194) with beryllium at 11/3, 2/3,  I /4).  The 
unit-cell dimensions derived from X-ray data are a = 2.2853 (3) 
and c = 3.5842 (2) ~. The shaded area within the outlined unit cell 
is the (110) plane, which goes through the tetrahedral holes, marked 
7", and through the octahedral holes, marked O. 
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The Monte Carlo method for estimation of errors that 
we have used closely follows the presentation of Press, 
Teukolsky, Vetterling & Flannery (1992). For an in- 
depth discussion on the Monte Carlo method, readers 
are referred to this text and references therein. We 
will briefly outline our adaptation of their Monte Carlo 
scheme as well as the main points of the procedure. The 
MEM density, p0, will have a corresponding set of cal- 
culated structure factors, F °. We can construct synthetic 
data sets by adding random noise to F ° according to the 
known error distribution around the true values. Methods 
to add random noise that follows a given distribution 
are well described in standard text books on numerical 
methods (see Press, Teukolsky, Vetterling & Flannery, 
1992). In this way, synthetic data sets, F i'syn, can be 
generated, and these synthetic data sets can be used as 
input to a series of MEM calculations. The result will 
be a series of Monte Carlo MEM densities, pi,Mc, and 
the scatter of these densities can be used to give an 
estimate of the error in the original MEM density, p0, 
which was obtained by the MEM from the observed 
structure factors, F °b~. The basic idea of the Monte 
Carlo simulation is that we are not assuming F ° to be 
equal to the true structure factors. We merely assume 
that the relationship between F ° and the synthetic data 
sets, F i'syn, is the same as the relationship between the 
true structure factors, F true, and the set we happened to 
measure, F °b~. In Fig. 3, a schematic representation of 
the Monte Carlo simulations is shown. 

3. Calculations 

As MEM calculations even for a single data set are com- 
putationally quite demanding, obviously Monte Carlo 
simulations require substantial computing power. The 
calculations presented in this paper were carried out 
on a Digital DEC3000 work station and as an example 
the CPU time for one MEM optimization with approxi- 
mately 3000 cycles was of the order of 30 min. However, 
as the problem is ideal for parallel computing, the speed 

of calculation can be much improved. In all calculations, 
the beryllium h.c.p, unit cell was divided into a 60 x 
60 × 60 grid. In the study of Iversen, Larsen, Souhassou 
& Takata (1995), a 120 x 120 × 120 grid was used in the 
final calculations of the topological features. However, 
in that study it was shown that a 60 x 60 × 60 density 
contains almost identical features to a 120 × 120 × 
120 pixel density and, for practical reasons (a factor of 
eight in computation time), the present study therefore 
employs a 60 x 60 x 60 grid. For practical reasons, 
we have also limited the present study to 200 Monte 
Carlo data sets. The conclusions presented below do 
not depend critically on this number. In future work, 
the Monte Carlo procedure may be optimized to save 
calculation time but the main purpose of this paper is to 
present the general idea of the calculations. In all Monte 
Carlo calculations, the iterations were stopped when the 
constraint X 2 = 1 / N  ~_,(U~ - F' n)2/Cr2 had reached a 
value of 1 and all calculations employed the same value 
of the Lagragian multiplier (A = 0.000015). 

4. Systematic bias in the M E M  

Once 200 Monte Carlo MEM densities are available, the 
standard uncertainty in each pixel, x, can be calculated 
by 

]'200 , ] 1/2 
o'(px) = [ ~ ( p i -  ~7.~)2/199j (1) 

L/=, 
If no systematic features are introduced by the MEM 
algorithm, we will expect that 

200 
--="x P~Ve = (1/200) ~] p.', = Px'° (2) 

i=1 

In (2), p!,! is the density in pixel number x of the 
MEM density obtained from the observed structure 
factors. However, the average value of the Monte Carlo 
densities, A~,e Px , turns out to be systematically different 
from p~. This is illustrated in Fig. 4, where a plot of 

pTrue I X-ray 
F'r'~ ] DIFFRACTION F o= MEM 

p o  

F ° 

F1 ~/n 

F2 syn 

F3 syn 

Fig. 3. Schematic representation of a Monte Carlo simulation of the error in the MEM density. 
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b(pO) = p.~V~_ pO is shown for the (110) plane. The 
map indicates where systematic bias, b(p°), is introduced 
in the density by the MEM algorithm. If a similar 
systematic bias was introduced in the calculation of 
p0 from the observed structure factors, F °b~, then the 
map also suggests where p0 may be systematically 
different from the true electron density of beryllium. It 
is instructive to analyze the distribution of the Monte 
Carlo MEM densities for individual pixels in order to 
get a better understanding of the features in Fig. 4. In 
Fig. 5, such distributions are shown for two different 
pixels. The first pixel is the beryllium maximum whereas 
the second pixel is a randomly chosen pixel. As can be 
seen, the distributions are not centered on the p0 values. 
In other words, the means of the distributions have been 
systematically shifted. The large atomic maximum is the 
most affected distribution and for this pixel the density 
has been shifted - 0 . 7 4 e / ~ - 3 .  The random pixel, Fig. 
5(b), has a relatively smaller shift of the mean of the 
distribution (0.01 e ~ -3) .  

In order to better understand the systematic bias in 
specific regions of the density, we have also analyzed 
the individual structure-factor values obtained after the 
MEM. Jauch & Palmer (1993) pointed out that after 
a MEM optimization the distribution of structure-factor 
residuals, AFJcr(Fj), is very non-uniform. The MEM 
tends to have the residual concentrated in a few low- 
order structure factors whereas the rest of the reflections 
fit almost perfectly.* For beryllium, it is the 101 reflec- 
tion that carries most of the error after the optimization, 
AF(IO1)/cr[F(IO1)] = -6 .9 ,  as compared to the second 

* A table of structure-factor residuals t~r various MEM densities 
have been deposited with the IUCr (Reference: SH0090). Copies may 
bc obtained through The Managing Editor, International Union of 
Crystallography, 5 Abbey Square, Chester CHI 2HU, England. 

largest residual, AF(I12)/cr[F(I12)] -- -1 .6 .  It is of 
interest to see whether the 101 reflection also carries 
most of the error in the Monte Carlo densities or 
whether it has been 'pulled back' towards the observed 
value. In Fig. 6, distributions of the structure-factor 
values corresponding to the Monte Carlo densities, F ?  c, 
are shown for the 101 reflection and for comparison 
also for a typical low-order reflection, 100. As can 
be seen, the 101 reflection is shifted away from the 
original MEM value, whereas the 100 reflection is nicely 
distributed around it. The 101 reflection is in other 
words shifted further away from the observed value in 

B e r y l l i u m  
60.0 

50.0 

40.0 

30.0 

20.0 

10.0 

0.0 
46.8 47.0 47.2 47.4 47.6 47.8 48.0 48.2 

e A -3 
(a) 

R a n d o m  
70.0 

t_ ._3 / 

i I1A 

Fig. 4. Contour plot in the (110) plane of the bias distribution, b(p °) = 
paVe _ p0 where pave is given in formula (2). The plot is on a linear 
scale with 0.05 e ~ -3  intervals. The maximum value in the map is 
0.115 e ,~-3 and the minimum --0.736 e ,~-3. The broken lines are 
negative contours and the solid lines are positive contours. 
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Fig. 5. Plots of the distributions of the Monte Carlo densities, pi.Mc. 
(a) Beryllium, (b) random pixel. The values of the average Monte 
Carlo density, pave and the original MEM density, pO, are marked 
on the plots. 
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the Monte Carlo calculation. The two reflections have 
similar distributions of the Monte Carlo structure factors 
but only the 101 reflection has a large systematic shift 
of the mean. 

de Vries, Briels & Feil (1994) noted that the larger the 
amplitude of a structure factor the larger the entropy gain 
when such a structure factor is made to deviate from the 
observed value. For beryllium, it is not necessarily the 
large-amplitude structure factors that carry most of the 
error. The strongest reflection for beryllium is the 002 
reflection and this reflection only has the sixth-largest 
deviation after the MEM optimization. There is also no 

40.0 

35.0 

30.0 

25.0 

20.0 

15.0 

10.0 

5.0 

0.0 
-2.68 

60.0 

1 0 1  

-2.64 -2.60 -2.56 -2.52 -2.48 -2.44 

F(Monte Carlo) 
(a) 

1 0 0  

obvious connection between the length of a scattering 
vector, IHI, and the residual, although the poorly fitting 
reflections always are low-order reflections. 

An interesting question is why it is the 101 reflection 
that is 'chosen' by the MEM to carry most of the error. 
We have calculated the entropy of the MEM density 
after convergence of single-structure-factor MEM calcu- 
lations for the 58 structure factors. The single-structure- 
factor MEM calculations are analogous to performing a 
Fourier 'summation' with just one structure factor. The 
entropy of the 101 reflection is considerably smaller 
than for the other reflections. Thus, the optimization 
of the entropy term makes the 101 reflection carry 
most of the error. If we remove the 101 reflection and 
perform the MEM optimization, it is the 112 and the 103 
reflections that have most of the error. These reflections 
are next on the list of minimal entropy. It seems that the 
entropy of the individual reflections is related to which 
reflections contribute most to the X 2 deviation after the 
optimization. 

In Fig. 7, a plot of the MEM density obtained from the 
101 single-structure-factor MEM calculations is shown. 
The 101 reflection builds up density at the beryllium 
position but, contrary to the other strong reflections, 
it introduces a minimum in the bipyramidal space of 
tetrahedral holes. These are exactly the regions with the 
largest systematic bias and in general the bias is found in 
highly symmetric positions. Clearly, the systematic bias 
in the MEM density is closely related to the fact that the 
scatter of the residuals, AFj/o-(Fj), is very nonuniform 
after a MEM calculation. 

5. Direct-space correction for systematic bias 

Since the average value of the Monte Carlo densities 
in a given pixel is different from p0, the MEM density 

50.0 

40.0 

30.0 

20.0 

10.0 

0.0 
-1.90 -1.89 -1.88 -1.87 -1.86 -1.85 -1.84 -1.83 -1.82 

F(Monte Cado) 

(b) 

Fig. 6. Distributions of Monte Carlo structure factors, F i'MC, for (a) 
the 101 and (b) the 100 reflections, respectively. The original MEM 
values, F °, as well as the average values, F ave, are  marked on the 
plots. 

~IA 

© 

Fig. 7. Contour plot of the 101 single structure-factor density in the 
(I 10) plane. Contours as in Fig. 1. 
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must contain systematic bias relative to the true density, 
ptrue. We do not know the MEM bias on ptrUc, but from 
the Monte Carlo simulations we know the bias on pt). 
We can use an iterative procedure to estimate the bias 
on ptrUc, b(ptrue), which is defined by (E[p °] denotes the 
expected value of p0) 

ptrue = E[pO] _ (E[pO] _ ptrUe) = E[pO] _ b(ptrUe). (3) 

Similarly, the bias on the MEM density, p0, is 

Gaussian error distributions around the true structure 
factors. In Fig. 9, the distribution of residuals in the 
structure factors before and after the correction is shown. 
However, since the value of X 2 after the first correction 
is 0.13 (0.02 after the second iteration), the comparison 
is not straightforward. We have therefore in Fig. 9(d) 
included the distribution of residuals for the uncorrected 
density with the MEM iterations stopped at X 2 = 0.13. 
The scatter of residuals for the bias-corrected density is 
clearly more uniform than for the original MEM density. 

pO = pave _ (paVe _ pO) = paVe _ b(pO). (4) 

If p0 is not very different from ptrUc, we can hope that 
b(p true) ~ b(p  °) and use the known bias on pO, b(pO), to 
correct p0 for systematic bias. If the assumption is valid, 
the correction will give us a better estimate of the true 
density, ill, 

~, = pO _ b(pO). (5) 

Because fi~ is a better estimate of ptrue, we then carry 
out the Monte Carlo simulations using fil and the cor- 
responding structure factors,/~l, in place of pt) and F °. 
This results in an estimate of the bias in fil that is an 
improved estimate of the bias in ptrue, 

b( f i ' )  =/),,ave _ t)'. (6) 

Knowing b(t) 1), we can calculate an improved estimate 
o f  ptrue as  

fi2 = p 0 _  b(~l). (7) 

The iterative procedure can be stopped when the differ- 
ence in the bias estimates between consecutive iterations 
is small. The result after the ith iteration is an estimate 
of the bias on  ptrue and this can be used to correct the 
original MEM density, 

0 _ pO 
Pco.ected - b(fii)  • (8) 

In Fig. 8, plots of the bias-corrected MEM density after 
one and two iterations are shown for the (110) plane. It is 
notable that the region around the non-nuclear maximum 
(NNM) in the basal plane has become flatter although 
it still contains density accumulation relative to the rest 
of the valence region. The importance of this will be 
discussed below. 

If the scheme presented above to correct for the bias 
is valid, then the scatter of the residuals should be more 
uniform for Pcorrected0 than for p0. If no bias is introduced 
by the optimization algorithm, the residual distribution 
of the structure factors should follow a normalized 
Gaussian distribution, N(0,1), under the assumption of 

6. Error estimates 

The mean-square error of the estimate is 

Er true LPx - ,'5'~] 2 E[[~'x E[pix]] 2 -}- [E[[)ix] ~true12 = -- - P x  J "  (9) 

/ 

JIA 
(a) 

\ 

JlA 
(b) 

C 

f 

Fig. 8. Contour plot in the (110) plane of the bias-corrected MEM 
density. In (a), the first-order corrected density is plotted, while (b) 
shows the second-order corrected density. Contours as in Fig. I. 
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Fig. 9. D i s t r ibu t ions  o f  res iduals ,  hF/a(F), versus the abso lu t e  va lues  o f  the s t ruc ture  factors  for va r ious  M E M  dens i t ies .  (a) U n c o r r e c t e d  
dens i ty ,  (b) f i rs t -order  b ias -cor rec ted  dens i ty ,  (c) s e c o n d - o r d e r  b ias -cor rec ted  dens i ty ,  (d) M E M  dens i ty  wi th  i t e ra t ions  s topped  at k 2 - -  0 .13 ,  
(e) M E M  dens i ty  o b t a i n e d  with H 2 we igh t i ng  and  ( f )  M E M  dens i ty  wi th  n o n - u n i f o r m  prior.  Note  that the plots  have  d i f fe ren t  scales  on  the 
abc i ssa  in o rder  to i l lustrate  both  the out l ie rs  in plots  (a),  (e) and  ( f ) ,  and  the fine features  in plots (b), (c) and  (d). 
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The first term is the variance and it can be estimated by 

"r 2., = [ 1 / ( N -  1)]~_,(~i ,-"J.  __ ~ : l , a v c ) 2 .  (10) 
J 

In (10), i denotes the iteration number, j the number of 
the Monte Carlo density, and x the pixel number. The 
random error T in ,~i x is plotted in Fig. 10. Generally, 
~-~ is very small in the valence regions with a slightly 
larger value in high-symmetry positions. The largest 
value, 0 .14eA -3, is at the beryllium position. For 

/ 

t 
t 

JIA 

l 6 is of the order 7-. We then have 

- - P ) x  

true ~ /  true = p., + n i p  )., - b (p° ) x .  

Fig. 10. Contour plot in the (110) plane of the first error term in eoua- 
tion (9). The contours are plotted on a linear scale with 0.0 le A -3  
intervals. The maximum value in the map is 0.137 e ,~-3 and the 
minimum is 0.007 e A -3 .  

comparison, we show in Fig. 11 the estimated random 
error distribution of the deformation density, Ap = 
( 1 / V ) ~ - ~ H ( F " b ~ / k ) -  F frccat°m, obtained by Larsen & 
Hansen (1984) using the method developed by Rees 
(1978). The error on Ap contains contributions from 
both the structure-factor errors and from the least-square 
errors on the refined structural parameters. However, for 
beryllium, the errors on the structural parameters are 
small. The Zip error estimate is primarily affected by 
the error in the scale factor, and the effect is almost 
exclusively seen at the Be nuclear position. In the 
valence regions, the error on Ap is probably comparable 
to estimates of the error in p itself. The random error in 
the MEM density is as expected slightly smaller than for 
Ap, but in magnitude in very good agreement with the 
previous error estimate. The values of the random error 
should be compared to the range -0 .74  to 0.12e &-3 
for b(p°) ,  i.e. the bias of p0 is at some positions five to 
ten times bigger than the standard error T~. In Fig. 12, 
b([~ I )~, - b (p°)x  = b[p ° - b(p°)]~ - b(p°), ,  is plotted. The 
range of b(/)l)x - b(p°).,, is -01014 to 0.057 e/~-3, and 
we may therefore expect that b(p  ° + 6)~ ~_ b(p°).~ when 

(11) 

The second term in (9) can therefore be approximated by 
[b(ptrUc)x - b(p°)~,] 2. We still do not know this quantity, 
but as a rough guide we can use [b(t) l ), - b(p°).~] 2 and as 
mentioned above this is of the same order of magnitude 
as T 2. 

Fig. 11. Estimated error distribution of the deformation density, J p ,  
in the (I 10) plane as obtained by Larsen & Hansen (1984) using 
the method of Rces (1978). Contours are plotted at 0.005 c ,~-3 
intervals starling at 0.015 e ,~-3. Contours above 0.045 e A - 3  have 
been omitted. 

(- I / ((* I1~'~//! ~'' ' '  

I I i ) \ 

,1A 
Fig. 12. Contour plot in the (i 10) plane of the second error term 

in equation (9). The contours are plotted on a linear scale 
with 0.005 e / ~ - 3  intervals. The maximum value in the map is 
0.057 e .~-3 and the minimum is - 0 . 0 1 4  e / ~ - 3 .  The broken lines 
are negative contours and the solid lines are positive contours. 
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7. Weighting schemes 

de Vries et al. (1994) as well as Iversen, Nielsen & 
Larsen (1995) showed that introduction of weighting 
schemes in the MEM calculations may improve the 
quality of the derived MEM densities. It was also noted 
that the distribution of structure-factor residuals of the 
MEM procedure becomes more uniform when larger 
weights are given to the low-order reflections during 
the optimization, de "Cries et al. (1994) found that 
using aME M = H2aF,  H being the length of the scatter- 
ing vector, gives the most satisfactory results. Iversen, 
Nielsen & Larsen (1995) used three different physical 
criteria to judge the densities obtained with different 
weighting schemes. In that study, use of CrME M = H a  F 
was found to improve high-temperature Mg nuclear 
densities, whereas low-temperature densities degraded 
upon introduction of weights. In the low-temperature 
densities, spurious features, which were not present in 
the unweighted densities, were introduced when using 
the H weighting. The weighting schemes are therefore 
not an inherent improvement of the MEM but merely 
an ad  hoc  way to remove certain features in the map. 
However, the introduction of weights do improve the 
residual distribution also in the case of the beryllium 
MEM EDD. In Fig. 13, the MEM density obtained 
with H 2 weighting is shown. The corresponding residual 
distribution is shown in Fig. 9(e). Fig. 9(e) should be 
compared with Fig. 9(a) showing the residual distri- 
bution for the unweighted MEM calculation. Because 
large-amplitude structure factors also tend to be low- 
order reflections, these reflections carry relatively more 
weight when OrME M = H20"F is used, and the poorly 
fitting reflections are therefore forced to agree better. 
However, one could just as well have used a weighting 
scheme based on the structure-factor amplitude. In some 
sense, the task is to introduce a weighting scheme that 
in a precise way counterbalances the MEM bias. A 
more attractive route than the use of weighting schemes 
is to introduce additional well defined constraints in 
the optimization. In the present MEM algorithm, only 
the variance of the residual distribution is constrained. 
A much stronger constraint would be to demand that 
the optimization is unbiased by enforcing the residual 
distribution to resemble an N(0,1) distribution. However, 
this will require an extensive rewriting of for instance 
the M E E D  algorithm. 

8. MEM calculations with 
non-uniform prior distributions 

The use of non-uniform priors in MEM charge-density 
calculations to express a pr ior i  knowledge/prejudice 
from other sources than the actual experiment has been 
discussed by Jauch & Palmer (1993), Jauch (1994) 
and Iversen, Larsen, Souhassou & Takata (1995). A 
natural non-uniform prior in the case of beryllium metal 

is a distribution consisting of two thermally smeared 
Be atoms placed at their unit-cell positions. The non- 
uniform prior distribution we have used was calculated 
using wavefunctions from Clementi & Roetti (1974) 
and neutron diffraction thermal parameters by Larsen, 
Brown, Lehman & Merisalo (1982). In Fig. 14, the MEM 
density obtained with use of this prior is shown. The 
structure-factor residuals corresponding to this density 
are plotted in Fig. 9(f). The residual distribution is also 
for this calculation quite non-uniform. The reflection 
carrying most of the error is again the 101 reflection 
but, contrary to the calculations with a uniform prior, 
the MEM density this time predicts a much too large 
absolute value. It is notable that the density is less 
smooth and more flat in the valence regions than the 
density obtained with the uniform prior. The structure 
factors corresponding to the density shown in Fig. 14 
were used as F ° input to a Monte Carlo calculation. 
The resulting MEM bias is shown in Fig. 15 and the 
bias-corrected density is shown in Fig. 16. The bias 
features outside the Be atom are considerably smaller 
than the bias obtained with a uniform prior (Fig. 4), 
which suggests that the non-uniform prior is preferable 
to the uniform prior. The various features in the density 
will be discussed below. 

9. Discussion 

With a knowledge of the errors, it is possible to assess 
the reliability of various topological features in the MEM 
density of metallic beryllium. The bias-corrected MEM 
density obtained with the uniform prior is quite different 
from the original MEM density especially in the low- 
density regions. The most notable difference is that the 
clear non-nuclear maximum in the basal plane (NNM1) 
has disappeared. The whole area around the bipyramidal 

Z 

;~A 
Fig. 13. Contour plot in the (1 I0) plane of the MEM density obtained 

using H 2 weighting (~Mt-M -- H2~r) .  Contours as in Fig. 1. 
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region of tetrahedral holes is now very flat although 
still of considerably higher density than the rest of the 
unit cell outside the Be atomic region. A flattening 
of NNM1 is also observed if the MEM iterations are 
allowed to progress to lower values of X 2. Iversen, 
Larsen, Souhassou & Takata (1995) noted that at X 2 = 
0.5 NNM 1 splits into two new maxima below and above 
the basal plane. The bias-corrected density is more noisy 
than the uncorrected density and a topological analysis 
with the CPGRID program (Souhassou, 1993) reveals 
a very large number of critical points without physical 
meaning. The topological analysis can therefore only be 
discussed on a qualitative level. It is notable that the 

i 

6, 

I1A 
Fig. 14. Contour plot in the (110) plane of MEM density obtained 

using a non-uniform prior distribution. Contours as in Fig. 1. 

1 

-0.02 

~ I A  

Fig. 15. Contour plot in the (110) plane of the bias distribution. 
t~(po) = pave  po, for the MEM density obtained with a 
non-uniform prior. The contours arc plotted on a linear scale 
with 0 .05c /~  -3  intervals. The maximum value in the map is 
0 .506c/~  -3 and the minimum is - 0 . 0 3 5 c / ~  -3 .  The density 
contains regions with slight negative bias (<  -0 .05) ,  which arc 
not seen in the plot. 

bias-corrected density still contains a region of minimal 
density around (0, 0, 1/4), which is also the minimum 
in p0. The region around the octahedral hole, (0, 0, 0), 
comes out as a weak secondary maximum (NNM2), but 
it is very flat and of lower density than the bipyra- 
midal region. Based on the bias-corrected density, we 
must conclude that the topological network proposed by 
Iversen, Larsen, Souhassou & Takata (1995) is uncertain 
although the bias-corrected density resembles a flatter 
version of the uncorrected density. Since the random 
error in the MEM density is very small, it will probably 
not influence these conclusions. 

The bias-corrected density obtained using a non- 
uniform prior is even flatter than the bias-corrected 
density obtained with a uniform prior. In this density, 
the valence region is almost without any structure and 
there is less than 0.04e/~ -3 difference between the 
extremes in the valence regions. As explained above, 
the MEM density with non-uniform prior also has the 
largest error carried by the 101 reflection but with an 
opposite sign compared to the calculation with uniform 
prior. The 101 reflection is primarily responsible for 
removing the density from the bipyramidal region (see 
Fig. 7) and the large error on the 101 reflection results in 
the MEM density with non-uniform prior instead having 
an underestimated density in this region. In Table 1, 
values of the MEM density are compared for some of the 
high-symmetry points in the structure. It may be that the 
atomic prejudice in the calculations with a non-uniform 
prior is too strong to move electrons away from the atom 
and into the valence regions. Iversen, Larsen, Souhassou 
& Takata (1995) showed that if the low-order data get 
increased weight in the MEM calculation with non- 
uniform prior then the corresponding valence density 
gets more structure and the topology resembles what 

C2, v 

I 0 
I1A 

Fig. 16. Contour plot in the (110) plane of the bias-corrected MEM 
density obtained using a non-uniform prior distribution. Contours 
as in Fig. !. 
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Table 1. Values o f  various MEM densities in high- 
symmetry positions 

The values are given in e ]k -3. For each point, the corresponding 
pixel values in the 60 × 60 × 60 MEM grid are listed. Numbers in 
parentheses are the standard uncertainties. 

Be NNM 1 NNM2 MIN 
(20, 40, 15) (40, 20, 15) (0, 0, 0) (0, 0, 15) 

Uniform prior 48.10 0.41 0.22 0.14 
Uniform prior, 48.84 0.29 0.20 0.20 

bias corrected (0.14) (0.03) (0.02) (0.01 ) 
Non-uniform prior 53.49 0.20 0.22 0.24 
Non-uniform prior, 52.98 0.23 0.20 0.20 

bias corrected (0.09) (0.01 ) (0.01 ) (0.01 ) 
Uniform prior, 

H 2 weighting 48.35 0.28 0.27 0.11 
Non-uniform prior, 

H 2 weighting 53.86 0.31 0.20 0.23 

is found with a uniform prior. In this respect, it should 
be mentioned that Iversen, Larsen, Souhassou & Takata 
(1995) also carried out conventional multipole modeling 
in order to test the results. The density obtained from 
a multipole model contains both NNM1 and the cage 
critical point at (0, 0, 1/4). Overall, it therefore seems 
probable that there is charge build up in the bipyramidal 
region but whether the maximum is in the basal plane 
or for instance in the tetrahedral holes is uncertain. A 
number of theoretical studies also indicate a charge build 
up in this region of the structure (Dovesi, Pisani, Ricca & 
Roetti, 1982; Chou, Lam & Cohen, 1983; Ross, Ermler, 
Kern & Pitzler, 1992). 

de Vries, Briels & Feil (1996) have recently re- 
peated the MEM calculations on Be with a non-uniform 
prior density previously reported by Iversen, Larsen, 
Souhassou & Takata (1995). These calculations indicate 
a minimum at (2/3, 1/3, 1/4). This is probably, as 
discussed above, because of too strong atomic prejudice 
in the prior. In conclusion, a network containing NNM 1 
either in the basal plane or in the tetrahedral hole, NNM2 
in the octahedral hole and the cage critical point in 
(0, 0, 1/4) seems, based on the present analysis, the most 
convincing possibility. 

10. C o n c l u s i o n s  

A Monte Carlo type scheme to estimate the mean-square 
error in MEM charge densities has been presented. The 
Monte Carlo calculations show that the MEM densities 
are affected by systematic bias that is intimately related 
to the non-uniform distribution of the structure-factor 
residuals, AF;/cr(F,), after a MEM optimization. A 
scheme to esffmate ~the systematic bias and correct the 
density has been presented. The bias-corrected density 
has a more uniform residual distribution than the uncor- 
rected density. The study shows that the systematic bias 
in some regions is an order of magnitude larger than 
the random error in the MEM density. Correction for 

systematic bias may therefore be very important when 
interpreting fine details in MEM charge densities. The 
value of X 2 is lower than 1 after the bias correction 
and the scheme is therefore only partially successful 
in correcting for the systematic bias of the MEM. It 
would be desirable if the systematic bias of the MEM 
was counterbalanced during the optimization process. 
This may be possible by introducing a new constraint 
that constrains the residual distribution to an N(0,1) 
distribution. This will, however, demand an extensive 
rewriting of the MEED algorithm. Previously, various 
weighting schemes have been used in MEM calculations 
to reduce the bias of the method. For metallic beryl- 
lium, the use of CrME M = H2o'F, H being the length of 
the scattering vector, reduces the bias slightly but in 
general the use of weighting schemes seems to be an ad 
hoc way to interfere with the MEM optimization. The 
weighting schemes are not optimal in counterbalancing 
the systematic bias of the MEM procedure. 

The MEM density obtained with a non-uniform prior 
also contains systematic bias although less than the 
MEM density with uniform prior. This indicates that 
calculations with non-uniform priors lead to physically 
sounder results and this aspect of the MEM deserves 
further attention. In this way, more optimal non-uniform 
priors may be developed. 

The critical-point network of metallic beryllium was 
discussed based on the bias-corrected MEM densities 
and the corresponding error estimates. It seems that 
the valence features are flatter than originally proposed 
by Iversen, Larsen, Souhassou & Takata (1995) but 
overall the present analysis qualitatively supports the 
network established in that study. The flatness of the 
valence features corroborates the fact that beryllium is 
an excellent conductor. 

Finally, it should be reiterated that, because the 
present MEM algorithm does not contain a model, it 
cannot filter out inconsistencies in the data stemming 
from systematic errors. The MEM densities may 
therefore in the general case, where the data are of 
lesser quality than for Be, contain unphysical features, 
not only because of systematic bias in the calculation 
but also because of systematic errors in the data. 
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